Basic Concepts

运算规则

  1. (|ψ)=ψ|
  2. (|ψiψj|)=|ψjψi|
  3. (A^B^)=B^A^
  4. (ψj|ψi)=ψi|ψj
  5. (ψj|ψi)=(|ψi)(ψj|)=ψi|ψj=(ψj|ψi)
  6. ψj|A^T|ψi=ψi|A^|ψj
  7. ψj|A^|ψi=(ψi|A^|ψj)
  8. Hermitian operator: A^=A^
  9. Hermitian operator qualities:
    • Real Eigenvalues:ψj|A^|ψi=(ψi|A^|ψj)ψ|A^|ψR
    • Orthogonal Eigenvectors of different Eigenvalues:$\langle\psi_j|\hat A|\psi_i\rangle=a_i\langle\psi_j|\psi_i\rangle=a_j^\langle\psi_j|\psi_i\rangle=(\langle\psi_i|\hat A|\psi_j\rangle)^\Rightarrow\langle\psi_i|\psi_j\rangle=0,a_i\neq a_j$
    • Observable:ψ|A^|ψR
  10. Unitary operator: U^U^=U^U^=I^
  11. Matrix Elements: Aij=i|A^|j
  12. Projection operator: P^=|ψψ|
  13. Trace: Tr(A^)=ii|A^|i
    • Linearity: Tr(A^+B^)=Tr(A^)+Tr(B^)
    • Cyclic property: Tr(A^B^C^)=Tr(B^C^A^)=Tr(C^A^B^)
    • Similarity: Tr(A^)=Tr(U^A^U^)Tr(A^)=iλi

薛定谔表象和海森堡表象

  1. H^|ψ=it|ψ
  2. ψ|H^=itψ|
  3. Ehrenfest’s theorem: dA^dt=i[H^,A^]+A^t
  4. Heisenberg equation of motion: dA^dt=i[H^,A^]
薛定谔绘景 海森堡绘景 相互作用绘景
算符 A^S A^H(t) A^I(t)
矢量 |αS(t) |αH(t) |αI(t)
薛定谔矢量方程 iddt|αS(t)=H^S|αS(t) None iddt|αI(t)=V^I(t)|αI(t)
薛定谔算符方程 None iddtA^H(t)=[A^H(t),H^S] iddtA^I(t)=[A^I(t),H^0]

算符的对易

  1. [A^,B^]=A^B^B^A^
  2. [A^,B^]=[B^,A^]
  3. [A^,B^+C^]=[A^,B^]+[A^,C^]
  4. [A^,B^C^]=[A^,B^]C^+B^[A^,C^]
  5. [A^,B^C^]+[B^,C^A^]+[C^,A^B^]=0
  6. [x^,p^x]=i
  7. [x^,k(p^x)]=ik(p^x)
  8. [λ(x^),p^x]=iλ(x^)
  9. Expotential operator: eA^=n=0A^nn!
    • If A^ is Hermitian, eA^=nean|nn|
    • Further, ef(A^)=nef(an)|nn|
    • Baker-Hausdorff formula: eξA^B^eξA^=B^+ξ[A^,B^]+ξ22![A^,[A^,B^]]+
    • Baker-Campbell-Hausdorff formula: eA^+B^=eA^eB^e12[A^,B^]
  10. Uncertainty principle: ΔAΔB12|[A^,B^]| the equality holds when A^=icB^
    • ΔxΔpx2
    • ΔEΔt2

混合态和密度矩阵

  • Density matrix: ρ^=ipi|ψiψi|
  • Density matrix Quality:
    • Trace: Tr(ρ^)=1
    • Idempotent: {ρ^2=ρ^pure stateρ^2ρ^mixed state
    • Trace of Square: {Tr(ρ^2)=1pure stateTr(ρ^2)<1mixed state
    • Hermitian: ρ^=ρ^
    • Positive: ψ|ρ^|ψ0
  • Motion of density matrix: dρ^dt=i[H^,ρ^]+ρ^t
  • Average value: A^=Tr(ρ^A^)
  • Reduced density matrix: ρ^A=TrB(ρ^AB)
    • Average value of partial system: A^=TrA(ρ^AA^)=TrA(TrB(ρ^AB)A^)

谐振子和升降算符

  1. Hamiltonian: H^=p^22m+12mω2x^2
  2. Eigenvalue equation: H^|n=En|n=ω(n+12)|n
  3. Creation and Annihilation operator: a^=12mω(ip^+mωx^),a^=12mω(ip^+mωx^)
  4. Commutation relation: [a^,a^]=1
  5. Hamiltonian in terms of a^ and a^: H^=ω(a^a^+12)=ω(a^a^12)
  6. Quality of a^ and a^:
    • a^|n=n|n1
    • a^|n=n+1|n+1
    • x^=2mω(a^+a^)
    • p^=imω2(a^a^)
  7. Ground state: a^|0=0|0=(mωπ)14emω2x2

粒子数表象

  1. Particle number operator: N^=a^a^,H^=ω(N^+12)
  2. Eigenvalue equation: N^|n=n|n
  3. Amplitude Operator: B^=N^+1=nn+1|nn|
  4. Phase Operator: eiΦ^=n=0|nn+1|,eiΦ^=n=0|n+1n|
  5. Quality:
    • a^=B^eiΦ^=nn+1|nn+1|
    • a^=eiΦ^B^=nn+1|n+1n|
    • [N^,cosΦ^]=isinΦ^
    • [N^,sinΦ^]=icosΦ^

量子几何

哈密顿算符变化一周的时候,本征态的变化分为动力学相位和几何相位:

Cm(t0)=Cm(0)exp[0t0iEm(t)dt]exp[0t0m(t)|m˙(t)dt]=Cm(0)exp[i0t0Em(t)dt]exp[iγ(t0)]

其中

γ(t0)=i0t0m(t)|m˙(t)dt

当然,如果引起本征态或哈密顿算符变化的参数不直接是时间而是λ(t),原定义推广为:

γ(λ0)=i0λ0m(λ(t))|λ|m(λ(t))dt

其中

m(λ(t))|λ|m(λ(t))

被称为Berry联络。

角动量理论

轨道角动量

  1. Definition: [L^i,L^j]=iϵijkL^k
  2. Commutation relation:
    • Scalar Operator: [L^i,S^]=0
    • Vector Operator: [L^i,V^j]=iϵijkV^k
    • [L^2,L^i]=0
    • Hamiltonian: [L^2,H^]=[L^z,H^]=0
  3. Eigenvalue equation: L^2|l,m=l(l+1)2|l,m,L^z|l,m=m|l,m
  4. Creation and Annihilation operator: L^±=L^x±iL^y
    • [L^z,L^±]=±L^±
    • L^±|l,m=l(l+1)m(m±1)|l,m±1

自旋角动量

  1. Definition: [S^i,S^j]=iϵijkS^k
  2. Commutation relation is as same as orbital angular momentum
  3. Pauli matrices: σx=(0110),σy=(0ii0),σz=(1001)
    • σx2=σy2=σz2=I^
    • σxσy=iσz,σyσz=iσx,σzσx=iσy
    • σxσyσz=iI^
    • Commutation relation: [σi,σj]=2iϵijkσk
    • Inverse Commutation relation: {σi,σj}=2δij
  4. Eigenvalue Vector of Pauli matrices:
    • σx={112(11)112(1\-1)
    • σy={112(1i)112(1\-i)
    • σz={1(10)1(01)
    • σn={1(cosθ2sinθ2eiϕ)1(sinθ2eiϕ\-cosθ2)

对称性

微扰论

不含时微扰

  1. Perturbation Hamiltonian: H^=H^0+λV^
  2. Eigenvalue equation: H^(λ)|nλ=En(λ)|nλ
  3. Modification of Eigenvalue and Vector: |nλ=i=0λi|ni,En(λ)=i=0λiEni
  4. Correction Equation: λ0(H^0En0)|n0=0λ1(H^0En0)|n1=(En1δH^)|n0λk(H^0En0)|nk=(En1δH^)|nk1+i=2kEni|nki
  5. First Order Correction: En1=n0|V^|n0,|n1=mnm0|V^|n0En0Em0|m0
  6. Second Order Correction: En2=n0|V^|n1n0|En1|n1
  7. Degenrate Case: Only to find “Good” basis

含时微扰

  1. Perturbation Hamiltonian: H^=H^0+λV^(t)
  2. Expansion: |n(t)=i=0ci(t)|i
  3. Accurate Equation: iddtcn(t)=mVnmcm(t)ei(EnEm)t/iddt(c1(t)c2(t))=(V11V12eiω12tV21eiω21tV22)(c1(t)c2(t))
  4. Dyson series: cn(t)=cn(0)(t)+cn(1)(t)+cn(2)(t)+
  5. Approximate Equation:UI(t,t0)=n=0(i)nt0tt0tn1V^I(t1)V^I(tn)dt1dtn
  6. Zero Order Approximation: cn(0)(t)=n|i, i is the initial state
  7. First Order Approximation: cn(1)(t)=it0tn|V^(t)|idt
  8. Second Order Approximation: cn(2)(t)=12mt0tt0tn|V^I(t)|mm|V^I(t)|idtdt

变分法

0~|H^|0~0~|0~E0

散射理论

  • Scatter Wave Function: ψ(r)=eikr+f(θ,ϕ)eikrr, f(θ,ϕ) is the scattering amplitude
  • Differential Cross Section: D(θ,ϕ)=|f(θ,ϕ)|2
  • Green Function Method: ψ(r)=ϕ(r)+G0(ki,rr)V(r)ψ(r)dr
  • Green Function: G0(ki,rr)=m2π21|rr|e±ik|rr|
  • Operator Form: |ψp+=|ki+G^0+V^|ψp+
    • |ψp+=|ki+G^0+V^|ki+G^0+V^G^0+V^|ki+=n(G^0+V^)n|ki
    • f(θ,ϕ)=4π2m2kf|V|ψp+
    • T^+|ki=V^|ψp+
    • T^+=V^+V^G^0+V^+V^G^0+V^G^0+V^+
  • Optical Theorem: k4πσtot=[f(θ=0,ϕ=0)]